<tfoot id="eflpz"></tfoot>

      學(xué)術(shù)動態(tài) >> 正文
      上海交通大學(xué)謝春景教授學(xué)術(shù)報告會(3月3日)
      發(fā)布人:   信息來源:   日期:2023-03-01 09:11:13    打印本文

      報告題目:Analysis of steady flows with stagnation points for the incompressible Euler system in an infinitely long nozzle   

      報告時間:2023年3月3日(周五)10:00

      報告地點:騰訊會議 871-304-799

      報告人:謝春景

      報告人單位:上海交通大學(xué)

       

      報告簡介:

      Stagnation point in flows is an interesting phenomenon in fluid mechanics. It induces many challenging problems in analysis. We first derive a Liouville type theorem for Poiseuille flows in the class of incompressible steady inviscid flows in an infinitely long strip, where the flows can have stagnation points. With the aid of this Liouville type theorem, we show the uniqueness of solutions with positive horizontal velocity for steady Euler system in a general nozzle when the flows tend to the horizontal velocity of Poiseuille flows at the upstream. Finally, this kind of flows are proved to exist in a large class of nozzles and we also prove the optimal regularity of boundary for the set of stagnation points. This talk is based on joint work with Congming Li, Yingshu Lv, and Henrik Shahgholian.

      報告人簡介:

      謝春景,上海交通大學(xué)教授,2007年博士畢業(yè)于香港中文大學(xué),在2011年加入上海交通大學(xué)之前,在香港中文大學(xué)和密西根大學(xué)做博士后。研究興趣集中于高維流體力學(xué)方程組的適定性研究,特別是Euler方程組及其相關(guān)模型的亞音速解與跨音速解問題,定常Navier-Stokes方程組的適定性,以及高維Euler方程組弱解的不唯一性等。在Advances in Mathematics, Archive for Rational Mechanics and Analysis, Communications in Mathematical Physics等雜志發(fā)表多篇論文。

       

      邀請單位:數(shù)學(xué)與統(tǒng)計學(xué)院

      核發(fā):科研處 收藏本頁
      • 上一篇:沒有了
      • 下一篇:沒有了
      久久特级av一级毛片成人午夜精品,日韩精品视频在线播放,亚洲伊久久无码中文字幕,成在人线av无码免费看

      <tfoot id="eflpz"></tfoot>