<tfoot id="eflpz"></tfoot>

      學(xué)術(shù)動(dòng)態(tài) >> 正文
      “非線性偏微分方程理論及應(yīng)用”國際學(xué)術(shù)會(huì)議(6月29-30日)
      發(fā)布人:   信息來源:   日期:2022-06-27 10:39:05    打印本文

      為了促進(jìn)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院學(xué)科建設(shè)水平再上新臺(tái)階,交流偏微分方程的最新研究成果和發(fā)展動(dòng)態(tài),加強(qiáng)同相關(guān)領(lǐng)域?qū)<业膶W(xué)術(shù)交流與合作,推動(dòng)學(xué)院偏微分方程科研團(tuán)隊(duì)建設(shè),黃淮學(xué)院決定于2022年6月29日-6月30日舉辦“非線性偏微分方程及應(yīng)用”國際學(xué)術(shù)會(huì)議,會(huì)議邀請國內(nèi)外偏微分方程領(lǐng)域著名專家學(xué)者參會(huì)并做報(bào)告,歡迎廣大師生參加!

      會(huì)議主題非線性偏微分方程及應(yīng)用

      承辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、黃淮學(xué)院科研處

      會(huì)議地點(diǎn)黃淮學(xué)院9號(hào)樓502

      騰訊會(huì)議號(hào):896-6269-8848

      聯(lián)系人:卓然 18939692969zhuoran1986@126.com

      專家及報(bào)告題目

      主持人

      報(bào)告人

      題目

      趙中

      (黃淮學(xué)院)

      開幕式

      1.黃淮學(xué)院校長劉彥明教授致歡迎辭

      2.上海交通大學(xué)數(shù)學(xué)科學(xué)學(xué)院院長李從明教授致辭

      1

      李從明

      (上海交通大學(xué))

      陳文雄

      (Yeshiva University)

      Some recent development in nonlinear fractional reaction-diffusionequations

      2

      桂長峰

      (University of Texas at San Antonio)

      Liouville-type Theorems for steady solutions to the Navier-Stokes system in a slab

      3

      雷震

      (復(fù)旦大學(xué))

      曹道民

      (中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院)

      Helical solutions for 3D incompressible Euler equations

      4

      張志濤

      (中國科學(xué)院數(shù)學(xué)學(xué)院系統(tǒng)科學(xué)研究院 & 江蘇大學(xué))

      完全非線性橢圓方程(組)解的存在唯一性和對稱性

      5

      郭宗明

      (河南師范大學(xué))

      王術(shù)

      (北京工業(yè)大學(xué))

      Global well-posedness of one class of initial-boundary value problem on incompressible Navier-Stokes equations and the related models

      6

      葉東

      (華東師范大學(xué))

      Hardy-Rellich inequalities revisited

      7

      周煥松

      (武漢理工大學(xué))

      陶有山

      (上海交通大學(xué))

      Thin-film-type approximation to a pursuit-evasion system

      8

      黃耿耿

      (復(fù)旦大學(xué))

      Uniqueness of the non-trivial solutions of some degenerate Monge-Ampere equation

      9

      韓小森

      (河南大學(xué))

      陳志杰

      (清華大學(xué))

      Asymptotic behavior of positive solutions to the Lane-Emden system in planar domains

      10

      卓然

      (黃淮學(xué)院)

      孫玉華

      (南開大學(xué))

      On positive solutions of biharmonic elliptic inequalities on Riemannian manifolds

      11

      沈林

      (黃淮學(xué)院)

      何其涵

      (廣西大學(xué))

      The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation

      12

      王新敬

      (黃淮學(xué)院)

      劉祥清

      (云南師范大學(xué))

      Sign-changing solutions for a parameter-dependent quasilinear equation

      報(bào)告人:曹道民

      報(bào)告人單位:中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院

      報(bào)告人簡介:

      曹道民, 19836月畢業(yè)于湘潭大學(xué)數(shù)學(xué)專業(yè),19896月在中國科學(xué)院獲博士學(xué)位?,F(xiàn)任中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院研究員、博士生導(dǎo)師。主要從事非線性偏微分方程和非線性分析的研究,獨(dú)立或與人合作共發(fā)表論文130多篇,與人合作在Cambridge University Press出版專著一部。曾獲國家杰出青年基金(2004年)和中國科學(xué)院青年科學(xué)家獎(jiǎng)(1999年),曾任中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院應(yīng)用數(shù)學(xué)研究所所長。曾主持過中國科學(xué)院知識(shí)創(chuàng)新工程重要方向性項(xiàng)目《數(shù)學(xué)物理中的若干重大問題》和中國科學(xué)院前沿重點(diǎn)項(xiàng)目《帶間斷非線性橢圓型方程》等科研項(xiàng)目?,F(xiàn)任《應(yīng)用數(shù)學(xué)學(xué)報(bào)》和《數(shù)學(xué)物理學(xué)報(bào)》副主編,是《Applicable Analysis》、《Annales Academiae Scientiarum Fennicae, Mathematica》等多種刊物的編委。

      報(bào)告摘要

      三維不可壓縮歐拉方程的渦絲一定是副法向曲率流,對任意一條按副法向曲率流演化的曲線是否有渦集中于該曲線附近的解是一個(gè)長期未決的公開問題,稱之為渦絲猜想(vortex filament conjecture),該猜想僅在特殊情況得到解決。如該曲線是平面圓周,則對應(yīng)于小截面渦環(huán)解的存在性。對小截面渦環(huán)解的存在性已有許多研究。報(bào)告人將報(bào)告和萬捷(北京理工大學(xué))最近關(guān)于3維不可壓縮歐拉方程具有螺旋對稱的小截面渦解的存在性的結(jié)果,這是渦絲猜想在曲線為螺旋對稱的特殊情形。

      報(bào)告人:陳文雄

      報(bào)告人單位:Yeshiva大學(xué)

      報(bào)告人簡介:

      陳文雄,Yeshiva大學(xué)數(shù)學(xué)系終身教授,南開大學(xué)特聘講座教授(天津市千人),曾多次獲得美國國家科學(xué)基金獎(jiǎng),致力于偏微分方程、非線性泛函分析和幾何分析等。研究方向主要包括:非線性偏微分方程正解的分類,幾何不等式和黎曼流形上正解的性質(zhì)等。論文發(fā)表在 Annals of Math, J. of Diff. Geom, Comm. Pure and Appl. Math, Duke Math. J, Advances in Math, Arch. Rat. Mech. Anal等著名國際數(shù)學(xué)期刊,他引已達(dá)五千余次。

      報(bào)告摘要

      In this talk, I will summarize some of our recent results on the qualitative properties of positive solutions for nonlinear parabolic fractional equations

             (1)

      including asymptotic radial symmetry of solutions, monotonicity of the entire solutions in half spaces, non-existence of entire solutions with indenite non-linearities, radial symmetry of ancient solutions in the whole space, and sliding method for fractional parabolic equations.

      There have been a series of results for equation (1) if the fractional Laplacian is replaced by the regular Laplacian. However due to the non-locality of the fractional operator, many traditional approaches no longer work. We have introduced several new ideas and developed a series of new techniques to deal with the fractional cases. We believe that these new tools can be applied to solve many other nonlocal problems, both elliptic and parabolic.

      I would like to mention that many ideas and results in dealing with fractional elliptic equations can be modified and then applied to study the fractional parabolic equations. I will use some simple examples to illustrate this.

      報(bào)告人:陳志杰

      報(bào)告人單位:清華大學(xué)

      報(bào)告人簡介:

      陳志杰,2013年清華大學(xué)博士畢業(yè),2013-2016年臺(tái)灣大學(xué)博士后,20169月至今,清華大學(xué)數(shù)學(xué)系和數(shù)學(xué)中心副教授,博士生導(dǎo)師,研究領(lǐng)域是橢圓偏微分方程,迄今已發(fā)表論文40多篇,部分論文發(fā)表在Adv.MathAmer.J.Math、Arch.Ration.Mech.AnalComm.Math.Phys、J.Differ.GeomMath.Ann等著名期刊。

      報(bào)告摘要

      In this talk, I will introduce our recent work joint with Dr. Houwang Li and Prof. Wenming Zou about the asymptotic behavior of positive solutions to the Lane-Emden system in planar domains.

      報(bào)告人:桂長峰

      報(bào)告人單位:University of Texas at San Antonion

      報(bào)告人簡介:

      桂長峰教授于1991年獲得美國明尼蘇達(dá)大學(xué)博士學(xué)位。目前是德克薩斯大學(xué)圣安東尼奧分校(University of Texas at San Antonion)Dan Parman Endowed Professor。1984年在北京大學(xué)獲學(xué)士學(xué)位,1987年在北京大學(xué)獲碩士學(xué)位,1991年在美國明尼蘇達(dá)大學(xué)獲得博士學(xué)位。曾任紐約大學(xué)庫郎研究所講師,加拿大哥倫比亞大學(xué)助理教授、副教授,美國康尼迪格大學(xué)副教授、教授。2013年評選為美國數(shù)學(xué)會(huì)會(huì)士,曾獲得加拿大太平洋數(shù)學(xué)研究所研究成果獎(jiǎng),加拿大數(shù)學(xué)中心Aisensdadt獎(jiǎng),IEEE最佳論文獎(jiǎng),中國國家自然科學(xué)基金海外合作基金。他主要從事偏微分方程理論研究,特別在Allen-Cahn方程的研究,Moser-Trudinger不等式最佳常數(shù)的猜想等方面取得了一系列在國際上有重大影響的工作,在國際一流數(shù)學(xué)學(xué)術(shù)期刊發(fā)表論文50余篇,其中包括Annals of Mathematics, Inventiones Mathematicae等頂級期刊。

      報(bào)告摘要

      In this talk, I will present recent results on Liouville-type theorems for the steady incompressible Navier-Stokes system in a three-dimensional slab with either no-slip boundary conditions or periodic boundary conditions. When the no-slip boundary conditions are prescribed, we prove that any bounded solution is trivial if it is axisymmetric oris bounded, and that general three-dimensional solutions must be Poiseuille flows when the velocity is not big. When the periodic boundary conditions are imposed on the slab boundaries, we prove that the bounded solutions must be constant vectors if either the swirl velocity is independent of the angular variable, or decays to zero as r tends to infinity, The proofs are based on the fundamental structure of the equations and energy estimates. The key technique is to establish a Saint-Venant type estimate that characterizes the growth of Dirichlet integral of nontrivial solutions. The talk is based on a recent joint work with Jeaheang Bang, Yun Wang and Chunjing Xie.

      報(bào)告人:何其涵

      報(bào)告人單位:廣西大學(xué)

      報(bào)告人簡介:

      何其涵,博士,碩士生導(dǎo)師,現(xiàn)任職于廣西大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院。主要研究方向是偏微分方程,現(xiàn)主持國家自然科學(xué)基金地區(qū)基金1項(xiàng),曾主持國家自然科學(xué)基金青年基金1項(xiàng),國家自然科學(xué)基金天元基金1項(xiàng),廣西自然科學(xué)基金青年基金1項(xiàng)等,參與多項(xiàng)省部級及以上項(xiàng)目。在JMAA, ADE等雜志上發(fā)表論文十多篇。

      報(bào)告摘要

      We consider the existence and nonexistence of positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation:

      where  is a bounded smooth domain,  and is the critical Sobolev exponent for the embedding  The uncertainty of the sign of  in  has some interest in itself. We will show the existence of positive ground state solution which is of mountain pass type provided  and  While the case of  is thornier. However, for  we can also establish the existence of positive solution under some further suitable assumptions. And a nonexistence result is also obtained for  and  if Comparing with the results in Brézis, H. and Nirenberg, L. (Comm.PureAppl.Math. 1983), some new interesting phenomenon occurs when the parameter  on logarithmic perturbation is not zero.

      報(bào)告人:黃耿耿

      報(bào)告人單位:復(fù)旦大學(xué)

      報(bào)告人簡介:

      黃耿耿,復(fù)旦大學(xué)數(shù)學(xué)科學(xué)學(xué)院副教授,博士生導(dǎo)師。師從洪家興院士,后在上海交通大學(xué)做博士后研究,期間到臺(tái)灣大學(xué)訪問林長壽教授,入選2019年度上海市青年科技啟明星計(jì)劃,主要從事偏微分方程的理論研究。在Comm. Pure Appl. Math.,Comm. Partial Differential Equations,SIAM J. Numer. Anal.,Calc. Var. Partial Differential Equations, J. Differential Equations等國際著名數(shù)學(xué)期刊期刊上發(fā)表論文20余篇。黃耿耿副教授獲得國家基金2項(xiàng),現(xiàn)主持在研國家基金面上項(xiàng)目1項(xiàng)。

      報(bào)告摘要

      In this talk, we talk about the uniqueness of the nontrivial solutions of some degenerate Monge-Ampere equations.

      Under suitable conditions on f(t), we can show u is symmetric as  is symmetric. Then we can show the nontrivial solution u is unique by showing the non-degeneracy of the linearized equation for some special f(t). This is a joint work with Cheng Tingzhi.

      報(bào)告人:劉祥清

      報(bào)告人單位:云南師范大學(xué)

      報(bào)告人簡介:

      劉祥清,云南師范大學(xué)教授,主要研究領(lǐng)域:非線性泛函分析,主要是利用臨界點(diǎn)理論研究非線性橢圓邊值問題。2009年獲得蘇州大學(xué)博士學(xué)位,20108月破格晉升為副教授,20118月破格晉升為教授。201710-201810月在德克薩斯大學(xué)泛美分校學(xué)術(shù)訪問。主持完成國家自然科學(xué)基金3項(xiàng)、省部級項(xiàng)目2項(xiàng)。2011年獲得云南省第十屆科技論文獎(jiǎng)一等獎(jiǎng),201510月入選云南省中青年學(xué)術(shù)技術(shù)帶頭人后備人才,2019年獲得云南省自然科學(xué)獎(jiǎng)一等獎(jiǎng)。主要研究成果發(fā)表于CVPDE, JDE, Pro.Amer.Math.Soc.等國際學(xué)術(shù)期刊。

      報(bào)告摘要

      We consider quasilinear elliptic equations, including the following Modifified Nonlinear Schrodinger Equation as a special example:

      \begin{equation*}

      \begin{cases}

      \Delta

      u+\frac{1}{2}u\Delta u^2+\lambda|u|^{r-2}u=0,~~~\text{in}~\Omega,\\

      u=0~~~\text{on}~\partial\Omega.

      \end{cases}

      \end{equation*}

      where ??R^N(N ≥ 3) is a bounded domain with smooth boundary, λ > 0, r ∈ (2, 4). We prove as λ becomes large the existence of more and more sign-changing solutions of both positive and negative energies.

      報(bào)告人:孫玉華

      報(bào)告人單位:南開大學(xué)

      報(bào)告人簡介:

      孫玉華,南開大學(xué)數(shù)學(xué)學(xué)院副教授,博士生導(dǎo)師,研究方向?yàn)槔杪餍渭皥D上的分析,包括橢圓及拋物方程,在包括CPAM,JFA, Math. Annalen, CVPDE等著名期刊發(fā)表學(xué)術(shù)論文近20篇。

      報(bào)告摘要

      We investigate the non-existence and existence of positive solutions to biharmonic elliptic inequalities  on manifolds. Using Green function and volume growth conditions, we establish the critical exponent for biharmonic problem. This is based on joint work with Yadong Zheng.

      報(bào)告人:陶有山

      報(bào)告人單位:上海交通大學(xué)

      報(bào)告人簡介:

      陶有山,上海交通大學(xué)數(shù)學(xué)科學(xué)學(xué)院特聘教授。曾先后于南京大學(xué)、復(fù)旦大學(xué)、蘇州大學(xué)獲得數(shù)學(xué)學(xué)士、碩士和博士學(xué)位。主要研究方向?yàn)槠⒎址匠?,特別是趨化交叉擴(kuò)散方程,已在數(shù)學(xué)期刊(其中包括:JEMS, PLMS, JFA, SIAP, SIMA, Ann. I. H. Poincare)上發(fā)表論文90余篇,MR引用3400余次;2018-2021年連續(xù)四年入選科睿唯安全球高被引科學(xué)家?,F(xiàn)擔(dān)任數(shù)學(xué)期刊Nonlinear Analysis: RWAEMS Surveys in Mathematical Sciences (EMSS) 的編委。

      報(bào)告摘要

      This talk reports a recent co-work, with Michael Winkler (Paderborn)on a pursuit-evasion system that describes a fully cross-diffusive interaction mechanism between predators and preys. The system formally possesses two basic entropy-like structures, but the regularity thereby implied seems insufficient to ensure global solvability for large data. We design a suitable thin-film-type approximation which allows us to develop a theory not only of global weak solvability, but also of qualitative behavior.

      報(bào)告人:王術(shù)

      報(bào)告人單位:北京工業(yè)大學(xué)

      報(bào)告人簡介:

      王術(shù),教授,博士生導(dǎo)師?,F(xiàn)為北京工業(yè)大學(xué)教授,北京工業(yè)大學(xué)數(shù)學(xué)一級學(xué)科博士學(xué)位授權(quán)點(diǎn)責(zé)任教授。曾任中國數(shù)學(xué)會(huì)理事、中國工業(yè)與應(yīng)用數(shù)學(xué)會(huì)理事,北京工業(yè)大學(xué)應(yīng)用數(shù)理學(xué)院院長等職務(wù)。2016年獲得國務(wù)院政府特殊津貼。1990年河南大學(xué)本科畢業(yè),1993年北京理工大學(xué)碩士研究生畢業(yè),1998年南京大學(xué)博士研究生畢業(yè)。曾在中科院數(shù)學(xué)所和奧地利維也納大學(xué)做博士后,曾在美國加州理工學(xué)院做高級訪問學(xué)者。主要研究:偏微分方程及其應(yīng)用。現(xiàn)主持或曾主持國家自然科學(xué)基金8項(xiàng)(含重點(diǎn)項(xiàng)目1項(xiàng)),獨(dú)立獲得北京市科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng)1項(xiàng),出版著作3部,在《Adv. In Math.》《ARMA》《SIAM J Math Anal》《CPDE》《J. Diff. Eqns》等雜志發(fā)表SCI收錄學(xué)術(shù)論文100余篇。

      報(bào)告摘要

      The global well-posedness the initial-boundary value problem on incompressible Navier-Stokes equations and the related models in the domain with the boundary is studied. The global existence of a class of weak solution to the initial boundary value problem to two/three-dimensional incompressible Navier-Stokes equation with the pressure-velocity relation at the boundary is obtained, and the global existence and uniqueness of the smooth solution to the corresponding problem in two-dimensional case is also established. Some extends to the corresponding incompressible fluid models such as Boussinesq equation and FSI models etc. are given.

      報(bào)告人:葉東

      報(bào)告人單位:華東師范大學(xué)

      報(bào)告人簡介:

      葉東,現(xiàn)任華東師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院教授。1990年畢業(yè)于武漢大學(xué)中法數(shù)學(xué)班,1994年在法國卡尚高等師范學(xué)院獲得博士學(xué)位,后長期在法國大學(xué)任職,回國前是法國洛林大學(xué)的一級教授。主要研究領(lǐng)域是非線性偏微分方程和幾何分析。入選第國家級人才項(xiàng)目,于20189月全職回到華東師范大學(xué)工作。

      報(bào)告摘要

      Hardy-Rellich type inequalities have broad applications in different fields of analysis and geometry, they have been studied extensively since Hardy's seminal works one century ago. In this talk, we will revise various first order Hardy inequalities, and point out that most of them can be obtained by a simple and unified equality. This approach permits us to get some new or improved first order Hardy inequalities. We will explain also our approach to obtain higher order Hardy-Rellich type equalities which imply and improve many classical Hardy-Rellich inequalities. This is a joint work with Xia Huang at ECNU.

      報(bào)告人:張志濤

      報(bào)告人單位:中國科學(xué)院數(shù)學(xué)學(xué)院系統(tǒng)科學(xué)研究院 & 江蘇大學(xué)

      報(bào)告人簡介:

      張志濤,教授,博士生導(dǎo)師,博士,江蘇大學(xué)數(shù)學(xué)科學(xué)學(xué)院院長,中國科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院二級研究員、博士生導(dǎo)師, 中國科學(xué)院特聘研究員(核心骨干),中國科學(xué)院大學(xué)崗位教授。國家杰出青年基金獲得者、領(lǐng)軍人才、科技部中青年科技創(chuàng)新領(lǐng)軍人才、洪堡學(xué)者。Springer期刊Partial Differential Equations and Applications主編。主要研究方向:非線性泛函分析和偏微分方程。

      報(bào)告摘要

      我們利用拓?fù)浞椒ā⒎制缋碚摵鸵苿?dòng)平面法研究完全非線性橢圓方程(組),特別研究Monge-Ampère equations and k-Hessian equations在不同區(qū)域上解的存在唯一性、解的個(gè)數(shù)估計(jì)、解的對稱性,給出一些新結(jié)果。

      核發(fā):科研處 收藏本頁
      久久特级av一级毛片成人午夜精品,日韩精品视频在线播放,亚洲伊久久无码中文字幕,成在人线av无码免费看

      <tfoot id="eflpz"></tfoot>